On estimating the relationship between longitudinal measurements and time-to-event data using a simple two-stage procedure.
نویسندگان
چکیده
Ye, Lin, and Taylor (2008, Biometrics 64, 1238-1246) proposed a joint model for longitudinal measurements and time-to-event data in which the longitudinal measurements are modeled with a semiparametric mixed model to allow for the complex patterns in longitudinal biomarker data. They proposed a two-stage regression calibration approach that is simpler to implement than a joint modeling approach. In the first stage of their approach, the mixed model is fit without regard to the time-to-event data. In the second stage, the posterior expectation of an individual's random effects from the mixed-model are included as covariates in a Cox model. Although Ye et al. (2008) acknowledged that their regression calibration approach may cause a bias due to the problem of informative dropout and measurement error, they argued that the bias is small relative to alternative methods. In this article, we show that this bias may be substantial. We show how to alleviate much of this bias with an alternative regression calibration approach that can be applied for both discrete and continuous time-to-event data. Through simulations, the proposed approach is shown to have substantially less bias than the regression calibration approach proposed by Ye et al. (2008). In agreement with the methodology proposed by Ye et al. (2008), an advantage of our proposed approach over joint modeling is that it can be implemented with standard statistical software and does not require complex estimation techniques.
منابع مشابه
مدلسازی توام دادههای بقا و طولی و کاربرد آن در بررسی عوامل موثر بر آسیب حاد کلیوی
Background: In many clinical trials and medical studies, the survival and longitudinal data are collected simultaneously. When these two outcomes are measured from each subject and the survival variable depends on a longitudinal biomarker, using joint modelling of survival and longitudinal outcomes is a proper choice for analyzing the available data. Methods: In this retrospective archiv...
متن کاملBayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملحل معادلات برآوردکننده مدلهای رگرسیون با اندازه خطای تصادفی روی متغیر مستقل به روش بهینه سازی
Measurements of some variables in statistical analysis are often encountered with random errors. Therefore, investigating of the effects of these errors seems to be important. This event in regression analysis seems to be more necessary. Because the aim of the fitting a regression model is estimating the effect of an independent variable on a response variable. Then measurements of an independe...
متن کاملEstimating runoff precipitation and providing land use maps and agriculture levels in different periods of time, using remote sensing technology in Roud Zard basin area
Today, remote sensing technology is used in all scientific and informing fields around the world, and it has achieved to very satisfying results. In the present study, by using remote sensing technology and application of satellite photographs the coefficient of curve number was estimated with high accuracy and pick discharge of the flood was calculated with a good accuracy. In this study, i...
متن کاملModeling and Estimating the Dimensions of Stable Alluvial Channels using Soft Calculations
In this research, soft computational models including multiple adaptive spline regression model (MARS) and data group classification model (GMDH) were used to estimate the geometric dimensions of stable alluvial channels including channel surface width (w), flow depth (h), and longitudinal slope (S) and the results of the developed models were compared with the multilayer neural network (MLP) m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 66 3 شماره
صفحات -
تاریخ انتشار 2010